Dependency Parsing

Hung-yi Lee 李宏毅

	One Sequence	Multiple Sequences		
One Class	Sentiment Classification Stance Detection Veracity Prediction Intent Classification Dialogue Policy	NLI Search Engine Relation Extraction		
Class for each Token	POS tagging Word segmentation Extractive Summarization Slotting Filling NER			
Copy from Input		Extractive QA		
General Sequence	Abstractive Summarization Translation Grammar Correction NLG	General QA Chatbot State Tracker Task Oriented Dialogue		
Other?	ther? Parsing, Coreference Resolution			

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case marker
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction
Figure 15.2 Selected dependence effe et al., 2014)	cy relations from the Universal Dependency set. (de Ma

Directed graph node \rightarrow word edge \rightarrow relation

Dependency Parsing

BiLSTM 0000

Embed

Graph-based Contradiction!

Maximum Spanning Tree ROOT 0.2 ROOT W_2 W_1 0.2 0.9 0.3 0.7 ROOT W_2 W_1 0.3 0.9 0.7 W_1 W_2

Transition-based Approach

Step	Stack	Word List	Action	Relation Added		
0	[root]	[book, me, the, morning, flight]	SHIFT			
1	[root, book]	[me, the, morning, flight]	SHIFT			
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$		
3	[root, book]	[the, morning, flight]	SHIFT			
4	[root, book, the]	[morning, flight]	SHIFT			
5	[root, book, the, morning]	[flight]	SHIFT			
6	[root, book, the, morning, flight]		LEFTARC	(morning \leftarrow flight)		
7	[root, book, the, flight]		LEFTARC	$(\text{the} \leftarrow \text{flight})$		
8	[root, book, flight]		RIGHTARC	$(book \rightarrow flight)$		
9	[root, book]		RIGHTARC	$(root \rightarrow book)$		
10	[root]		Done			

Figure 15.7 Trace of a transition-based parse.

A stack, a buffer, some actions

We have learned similar approaches when talking about constituency parsing.

Transition-based Approach

SyntaxNet [Andor, et al., ACL'16]

Dependency Parsing

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Stack Pointer

[Ma, et al., ACL'18]

Reference

- Danqi Chen, Christopher D. Manning, A Fast and Accurate Dependency Parser using Neural Networks, EMNLP, 2014
- Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith, Transition-Based Dependency Parsing with Stack Long Short-Term Memory, ACL, 2015
- Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov and Michael Collins, Globally Normalized Transition-Based Neural Networks, ACL, 2016
- Timothy Dozat, Christopher D. Manning, Deep Biaffine Attention for Neural Dependency Parsing, ICLR, 2017
- Timothy Dozat, Christopher D. Manning, Simpler but More Accurate Semantic Dependency Parsing, ACL, 2018
- Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, Eduard Hovy, Stack-Pointer Networks for Dependency Parsing, ACL, 2018